검색기술 트렌드와 네이버의 연구현황

김상범 / Director of Search Quality 2018. 5.

NAVER

DISCLAIMER

본 발표내용에는 개인적인 의견이나 주장이 포함되어 있을 수 있으며 이는 회사의 공식적 입장과는 무관합니다.

Outline

- 전세계 의미있는 검색서비스 7개
- 검색서비스를 만드는 과정
- 검색엔진 핵심모듈 : Matching & Ranking
- Take Home Message

Google

	Sea	arch Engi			
Country	Leader	Share	Runner-Up	Share	Internet Penetration
Argentina	Google	92%	Yahoo	3%	75.0%
Australia	Google	94%	Bing	4%	89.6%
Brazil	Google	95%	Others	6%	54.2%
Canada	Google	87%	Yahoo	6%	92.5%
China	Baidu	55%	Qihoo 360	28%	49.5%
France	Google	92%	Yahoo	4%	83.3%
Germany	Google	94%	Bing	2%	88.6%
Hong Kong	Google	73%	Yahoo	24%	80.5%
India	Google	96%	Others	4%	28.3%
Indonesia	Google	96%	Others	4%	28.5%
Italy	Google	95%	Yahoo	2%	58.5%
Japan	Google	57%	Yahoo Japan	40%	90.6%
Malaysia	Google	93%	Yahoo	4%	67.5%
Mexico	Google	94%	Bing	3%	49.2%
The Netherlands	Google	94%	Bing	2%	95.7%
The Philippines	Google	89%	Yahoo	7%	43.0%
Poland	Google	97%	Others	3%	66.9%
Russia	Yandex	58%	Google	34%	61.4%
Saudi Arabia	Google	94%	Yahoo	2%	65.9%
Singapore	Google	92%	Yahoo	6%	82.0%
South Africa	Google	93%	Bing	4%	49.0%
South Korea	Naver	77%	Daum	20%	92.3%
Spain	Google	95%	Yahoo	2%	74.8%
Sweden	Google	94%	Bing	3%	94.8%
Thailand	Google	98%	Others	2%	34.9%
Turkey	Google	96%	Yandex	2%	56.7%
United Arab Emirates	Google	94%	Yahoo	2%	93.2%
United Kingdom / UK	Google	90%	Bing	5%	89.8%
United States	Google	72%	Bing	21%	87.9%
Vietnam	Google	92%	Bing	4%	48.3%

- Bing: 인터넷 익스플로러를 기반으로 Google 추격?
 - https://www.wired.com/2011/02/bing-copies-google/

Google Catches Bing Copying; Microsoft

GOOGLE CATCHES BING COPYING; MICROSOFT SAYS 'SO WHAT?'

Yahoo

야후 3분기 실적 부진…구글과 검색엔진 제휴

송고시간 | 2015/10/21 11:43

+ -

(서울=연합뉴스) 정선미 기자 = 미국 포털업체 야후가 구글과 검색 엔진 제휴를 통해 실적 부진의 돌파구 마련에 나섰다.

20일(현지시간) 영국 일간 파이낸셜타임스(FT)에 따르면 야후는 이날 실적을 발표하는 자리에서 구글과 제휴를 통해 검색 결과와 검색 광고를 공급받게 될 것이라고 밝혔다.

2009년 마이크로소프트(MS)와 검색 엔진 빙을 10년간 자사검색에 쓰기로 한 야후는 지난 4월 계약 변경을 통해 검색 결과의 51%는 계속 빙으로부터 받게 될 예정이다.

Adobe Flash Player을(를) 사용하려면 클릭하세요.

나머지 49% 가운데 일부가 구글 검색 결과를 받게 되지만 정확한 비중은 알려지지 않았다.

• Baidu

구글, 중국 본토서 철수

[앵커멘트] 사전 검열 문제로 **중국** 정부와 갈등을 빚어온 미국의 검색 엔진 **구글이 중국** 본토에서 **철수** 하고 홍콩에서 우회적으로 서비스를 제공하겠다고 밝혔습니다. **중국** 내 비판이 잇따르는 가운데 미국 정부도 실망감을 나타냈습니다. 박신윤 기자의 보도입니다. [리포트] **구글**이 결국 **중국...**

2010.03.23. YTN 네이버뉴스

바이두 1Q 순익 두배 급증 '땡큐 구글'

바이두의 이 같은 선전은 구글이 중국 정부의 인터넷 검열에 반대하며 중국 시장을 철수한 데 따른 반사이익으로 풀이된다. 크레디트 스위스 그룹의 월러스 청은 "중국내 구글의 광고주들이 대부분 바이두로 이동한 것으로 추정된다"며 "이에 바이두의 광고비 단가가 상승했다"며 순익...

2010.04.29. | 아시아경제 | 네이버뉴스

구글 이어 야후도 중국서 짐싼다

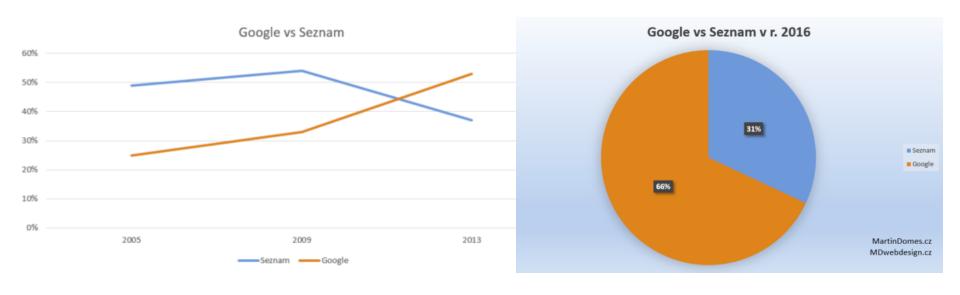
구글에 이어 야후마저 철수하면서 중국 인터넷 시장은 바야흐로 외국계 기업이 설 자리가 없는 '무덤'이 되고 있다. 반면 알리바바와 텐센트, 바이두 등 현지 인터넷 기업들은 거대한 내수를 발판으로 고속 성장을 계속하고 있다. 18일(현지시간) 월스트리트저널(WSJ)은 소식통을 인용해...

2015.03.19. 비즈니스워치

• Yandex : Google 이 추격중 (2년동안 23%차 → 8%차)

<< Sep. 15	October 2015			No	v. 15 >>	
report: from search engines				by da	ys by weeks by	months
values: average daily / summarized	Octobe	er 2015	Septembe	er 2015	at the a for 3 i	verage months
Yandex	95,747,996	57.5%	88,350,993	57.4%	87,944,514	57.3%
✓ Google	58,042,645	34.9%	53,679,060	34.9%	53,637,708	35.0%
<< Sep. 17	Oct	ober 201	7		<u>No</u>	v. 17 >>
report: from search engines				by da	ys by weeks by	y months
values: average daily / summarized	Octob	er 2017	Septembe	er 2017		verage months
Yandex	59,732,021	52.0%	55,293,894	51.5%	55,305,245	51.6%
✓ Google	50,258,202	43.8%	47,429,267	44.2%	47,134,364	44.0%

- Seznam: 체코의 검색서비스. 하락세.
 - 2011년경부터 역전. 현재 7:3으로 구글 우세

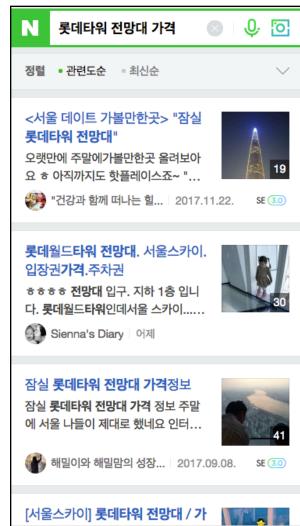


• 네이버

웹검색이 뉴스검색, 블로그검색과 다른점

	뉴스/블로그	웹
검색대상의 양과 위치	대략 알 수 있음	얼마나 많은 문서가 어디에 있는지 파악 자체가 어려움
검색컨텐츠의 품질	일정부분 관리 가능	관리 불가능
사용자가 원하는 문서	여러 좋은 문서 중 몇개	오직 그 웹페이지

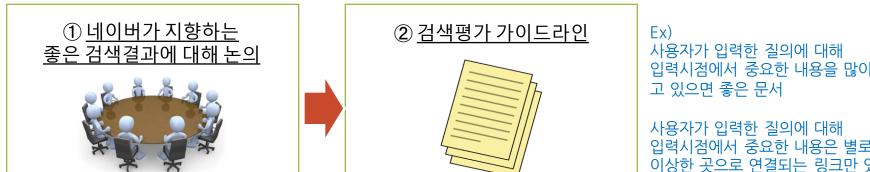
웹검색이 뉴스검색, 블로그검색과 다른점



3세 이상 어린이 24.000원 만... 이용관련 **전망대** 입...

검색서비스를 개발하는 과정

• 먼저 가이드라인에 따른 기계학습용 학습데이터를 구축하고,



입력시점에서 중요한 내용을 많이 포함하

입력시점에서 중요한 내용은 별로 없고 이상한 곳으로 연결되는 링크만 있으면 나쁜 문서

Ex) 2017년 11월 13일 오후 6시에 입력 된 "페미니스트" 라는 질의에 대하여

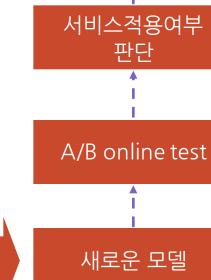
> doc0001:5점 doc0002:2점 doc0003:3점 doc0004:1점

검색서비스를 개발하는 과정

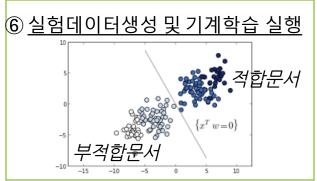
• 기계학습알고리즘을 이용하여 검색랭킹모듈을 학습

질의가 제목에 매치된 빈도 제목 전체에서 질의와 매치된 비율 질의가 본문에 매치된 빈도 질의내 단어별 본문매치빈도의 분산 해당 사이트의 신뢰도 해당 도메인의 남은 유효기간

Ex)

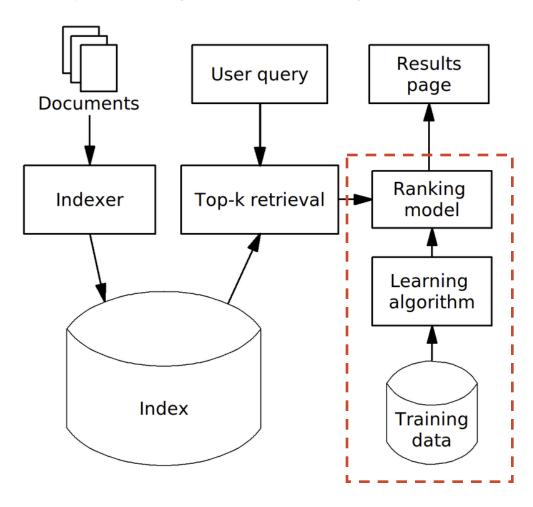


<u>뉴스검색학습용 데이터집합</u>



랭킹모듈을 "학습"한다?

- Learning-to-Rank
 - https://en.wikipedia.org/wiki/Learning_to_rank



전형적인 기계학습의 예

• 만일 아래와 같이 입력에 대해 출력값을 내주는

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

• 함수 f의 w1, w2 를 구하려면?

$$- f = x1*w1 + x2*w2$$

전형적인 기계학습의 예

• 만일 아래와 같이 입력에 대해 출력값을 내주는

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

• 함수 f의 w1, w2 를 구하려면?

$$- f = x1*w1 + x2*w2$$
0.3
0.7

전형적인 기계학습의 예

• 만일 아래와 같이 입력에 대해 출력값을 내주는

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

• 함수 f의 w1, w2 를 구하려면?

$$- f = x1*w1 + x2*w2$$
0.3
0.7

x1	x2	f
0.1	0.1	0.1
0.9	0.1	0.66
0.1	0.9	0.34
0.6	0.6	0.6

기계학습을 구성하는 두 파트

• 벡터로 만들어진 학습데이터

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

- 학습알고리즘
 - 신경망, 결정트리, 로지스틱회귀분석 등…
 - 모두 오픈되어 있고 각 기업은 다양한 실험을 통해 적합한 알고리즘을 찾 고 조금씩 튜닝

검색랭킹 기계학습을 구성하는 두 파트

• 벡터로 만들어진 검색랭킹용 학습데이터

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

검색랭킹 기계학습을 구성하는 두 파트

• 벡터로 만들어진 검색랭킹용 학습데이터

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

number of title matched words in user query number of words in user query

number of title matched words in user query number of words in title

검색랭킹 기계학습을 구성하는 두 파트

• 벡터로 만들어진 검색랭킹용 학습데이터

x1	x2	f
0	0	0.0
0	1	0.3
1	0	0.7
1	1	1.0

number of title matched words in user query
number of words in user query

number of title matched words in user query number of words in title

랭킹시그널(비밀유지)

랭킹시그널을 비밀로 하는 이유

• 좋은 랭킹시그널을 발견하는것은 엔지니어의 몫

 랭킹시그널을 공개하면, 그 랭킹시그널은 빠른 시일 내에 무력 화되므로, 새로운 시그널을 개발해야 함

• 엔지니어들은 점점 힘들어지고, 좋은 서비스를 만들기는 점점 어려워짐

랭킹시그널을 비밀로 하는 이유

Schmidt: Listing Google's 200 Ranking Factors Would Reveal Business Secrets

- 설리번 : 200개정도 시그널을 쓴다고 했는데 왜 얘기 안해주나?
- 슈미트 : 계속 바뀌고 … 우리가 힘들어지니까 안된다
- 설리번: 뭐가 중요한지 이런건 아니더라도 그냥 리스트만..
- 슈미트: 리스트도 안된다
- 설리번: 한 50개는 계속 안변하고 쓰지 않냐?
- 슈미트 : 아무튼 비밀이다
- 블룸버그기자: 너무 개방적이지 않은 모습 아닌가?
- 슈미트: 그럼 블룸버그는 얼마나 개방적인지 같이 얘기해볼까? ...

-

랭킹시그널을 체계적 방식으로 추정 : SEO Business

검색서비스를 개발하는 과정: wrap up

① 네이버가 지향하는 ② 검색평가 가이드라인 좋은 뉴스검색결과에 대해 논의 ③ 가이드라인에 따른 평가 ④ <u>학습용 데이터집합</u> 서비스적용여부 판단 A/B online test ⑥ 실험데이터생성 및 기계학습 실행 ⑤ 엔지니어들의 시그널 발굴 새로운 모델

랭킹성능은 어떻게 구하고 실제로 어느정도인가?

- 이상적인 랭킹 : 5, 4, 3, 2, 1
 - DCG = $5 + 4/\log_2(3) + 3/\log_2(4) + 2/\log_2(5) + 1/\log_2(6) = 10.27$
 - nDCG = 10.27 / 10.27 = 1
- 만일 A방법으로 한 랭킹이 5, 4, 3, 1, 2 라면…
 - DCG = $5 + 4/\log_2(3) + 3/\log_2(4) + 1/\log_2(5) + 2/\log_2(6) = 10.23$
 - nDCG = 10.23/10.27 = 0.996
- 만일 B방법으로 한 랭킹이 4, 5, 3, 2, 1 라면…
 - DCG = $4 + 5/\log_2(3) + 3/\log_2(4) + 1/\log_2(5) + 2/\log_2(6) = 8.27$
 - nDCG = 8.27/10.27 = 0.805

랭킹성능은 어떻게 구하고 실제로 어느정도인가?

• Yahoo에서 주관한 Learning-to-rank challenge (2011년)

	Validation		Test	
	ERR	NDCG	ERR	NDCG
BM25F-SD	0.42598	0.73231	0.42853	0.73214
RankSVM	0.43109	0.75156	0.43680	0.75924
GBDT	0.45625	0.78608	0.46201	0.79013

http://proceedings.mlr.press/v14/chapelle11a/chapelle11a.pdf

랭킹성능은 어떻게 구하고 실제로 어느정도인가?

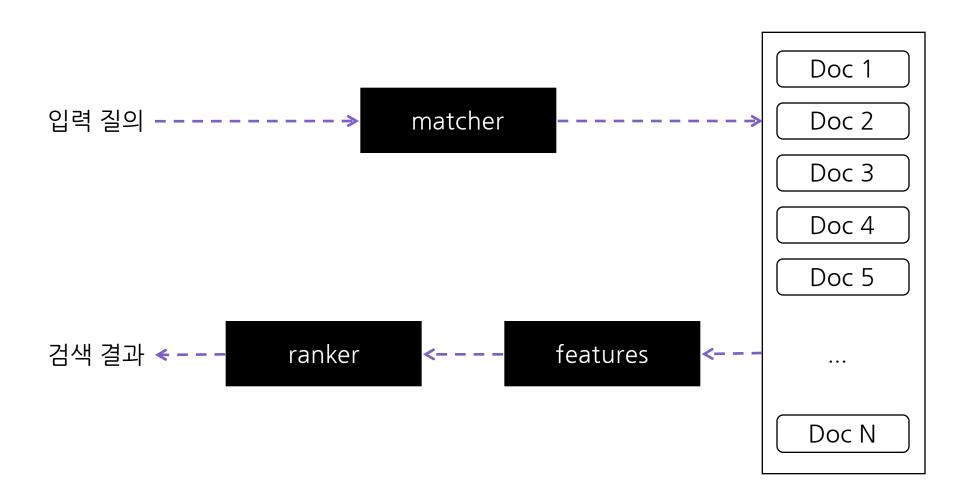
• Yahoo에서 주관한 Learning-to-rank challenge (2011년)

	Validation		Test	
	ERR	NDCG	ERR	NDCG
BM25F-SD	0.42598	0.73231	0.42853	0.73214
RankSVM	0.43109	0.75156	0.43680	0.75924
GBDT	0.45625	0.78608	0.46201	0.79013

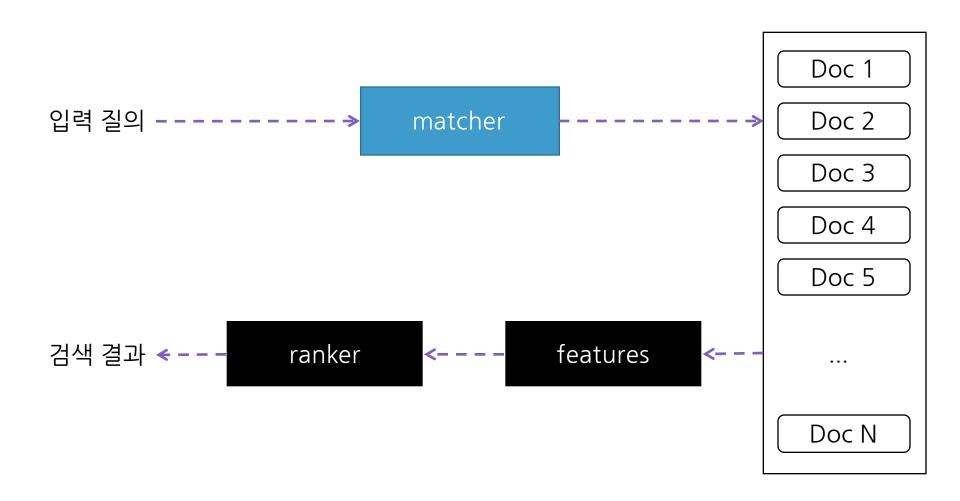
http://proceedings.mlr.press/v14/chapelle11a/chapelle11a.pdf

랭킹이 이상한건 조작이 아니라 기술력의 한계때문으로 이해해주셔야 합니다

검색엔진 핵심모듈: Matching and Ranking

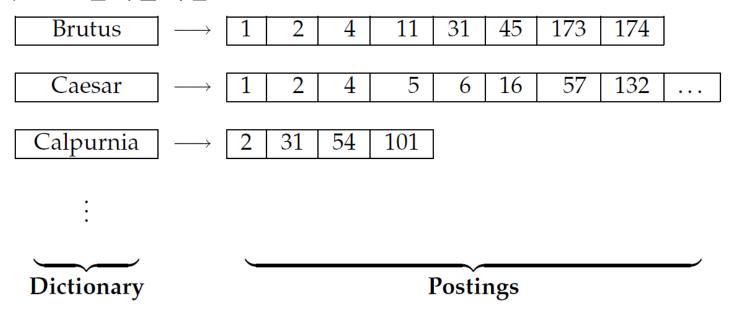


검색엔진 핵심모듈: Matching and Ranking



Matching

- 사용자가 입력한 질의와 관련이 있는 문서를 일단 모두 추려내는 일로, 색인(Indexing)에의해 가능
 - 1952년, Taube 등에 의해 처음 제안됨. 그 전까지는, 많은 문서들은 카 테고리 코드를 부착하는 식으로 관리되었음.
 - 그 당시는 매우 급진적인 아이디어로 인식되었으나, 현재는 너무 당연한 구조로 받아들여짐.

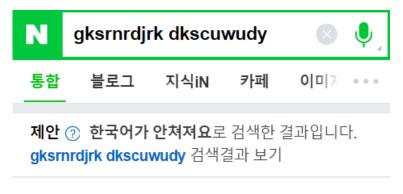


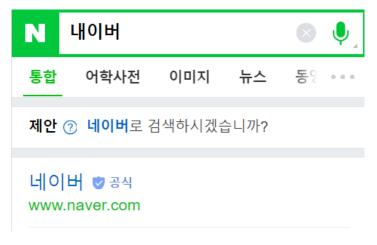
https://nlp.stanford.edu/IR-book/pdf/01bool.pdf

Matching

- 현재까지는 단어기반 매칭이 주류
- 단어기반 매칭은 형태론적 분석, 동의어처리가 도전과제
 - university / universities, rewritten / rewriting
 - 대학생선교회 / 대학주변교회
 - 이탈리아 / 이태리, UN / United Nations, to be or not to be

• 그 외에 질의오류교정 등의 기술이 서비스에 적용됨

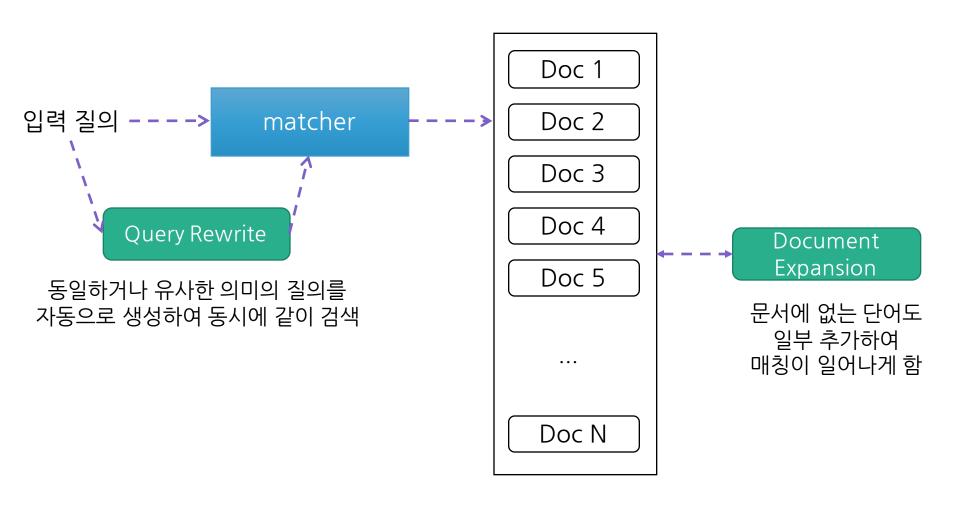




Semantic Matching

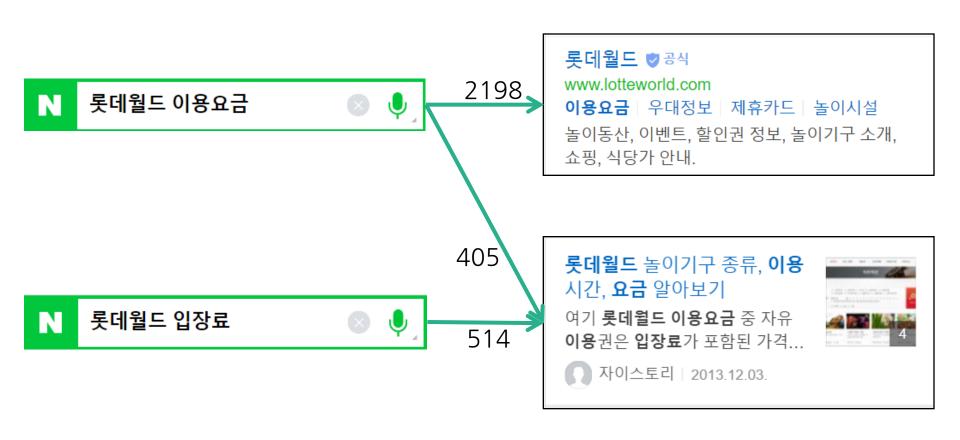
• 질의단어를 조금 다르게 입력해도 잘 검색이 될 수 있도록!

Semantic Matching @ NAVER

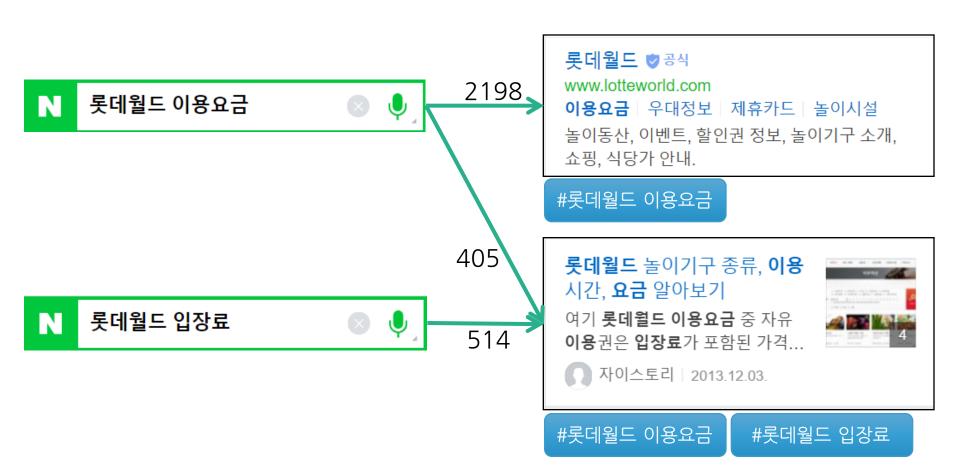


Document Expansion

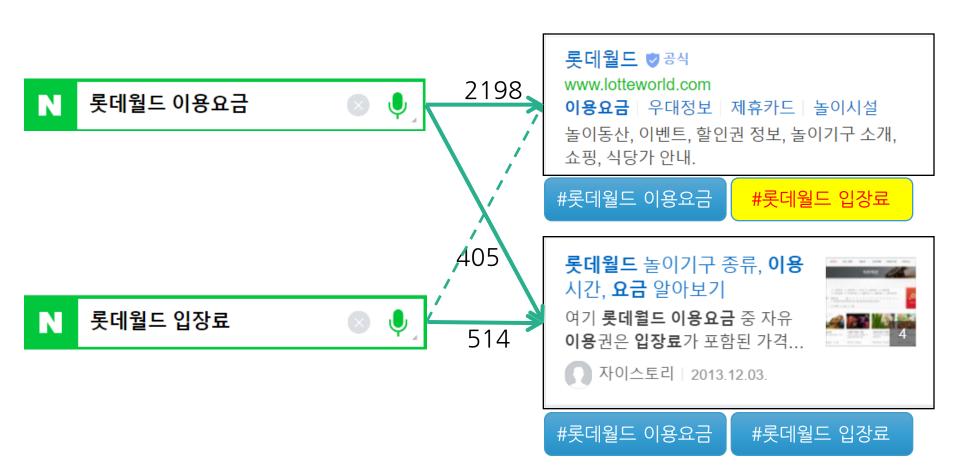
• QueryText = 사용자가 문서를 클릭했을 때 이용한 쿼리



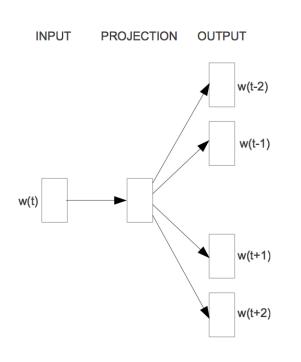
• QueryText는 검색에서 중요한 시그널로 사용됨



• 클릭그래프에서 이웃간에는 관련성이 있지 않을까?



- 질의와 문서를 노드, 클릭발생을 간선으로 하여 그래프를 구성
- 그래프의 모든 노드를 벡터로 임베딩
- word2vec과의 analogy:

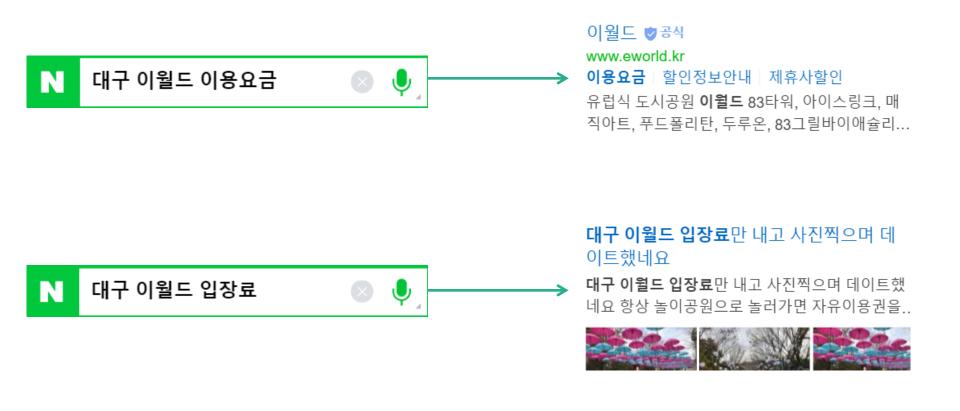


word2vec 에서의 단어~주변단어
→ node2vec에서의 노드~주변노드

클릭은 매일 엄청나게 발생하므로, incremental 한 embedding 진화가 중요

<u>node2vec: Scalable Feature Learning for Networks</u>. A. Grover, J. Leskovec. *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 2016.

• 앞의 방식은 클릭이 어느 정도 존재해야 가능하다는 문제가 ㅠ



- 자동번역기법을 응용해보자!
 - Click Graph Embedding에 의해 발견된 유사질의쌍을 바탕으로

롯데월드 이용요금	롯데월드 입장료
에버랜드 이용요금	에버랜드 입장료
에코랜드 이용요금 할인	에코랜드 입장료 할인

- 자동번역기법(SMT/NMT)을 활용하여 유사질의를 생성

	대구 이랜드 이용요금	???
--	-------------	-----

- 자동번역기법을 응용해보자!
 - Click Graph Embedding에 의해 발견된 유사질의쌍을 바탕으로

롯데월드 이용요금	롯데월드 입장료
에버랜드 이용요금	에버랜드 입장료
에코랜드 이용요금 할인	에코랜드 입장료 할인

- 자동번역기법(SMT/NMT)을 활용하여 유사질의를 생성

- "수줍게" 문서에 넣어보고... 클릭이 발생하면... CGE 로 선순환
- 클릭이 발생하지 않으면... negative example

잠깐!

• 왜 딥러닝 기반 번역이 떴을까?

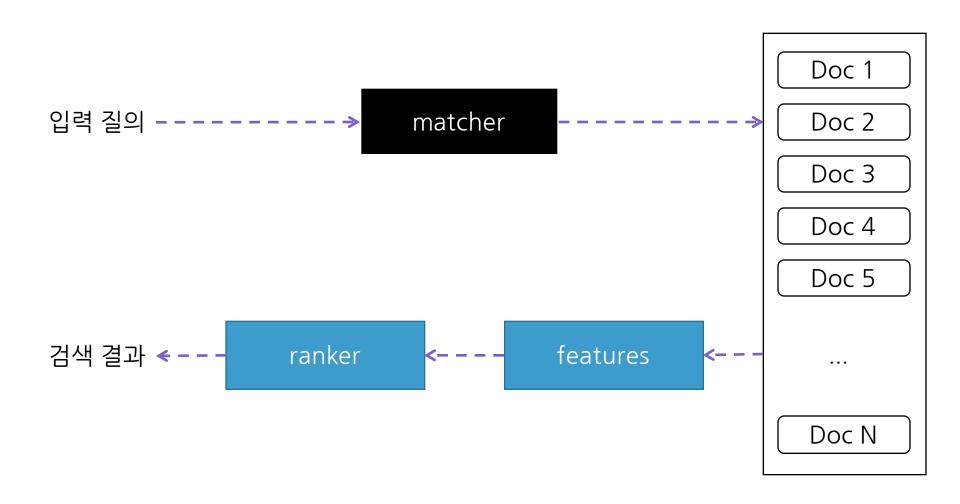
	롯데월드 이용요금	롯데월드 입장료
	에버랜드 이용요금	에버랜드 입장료
	에코랜드 이용요금 할인	에코랜드 입장료 할인
	대구 이랜드 이용요금	대구 이랜드 입장료
•	렌터카 이용요금	렌터카 ???

잠깐!

• 단어의 의미가 벡터로 임베딩되는 특징때문

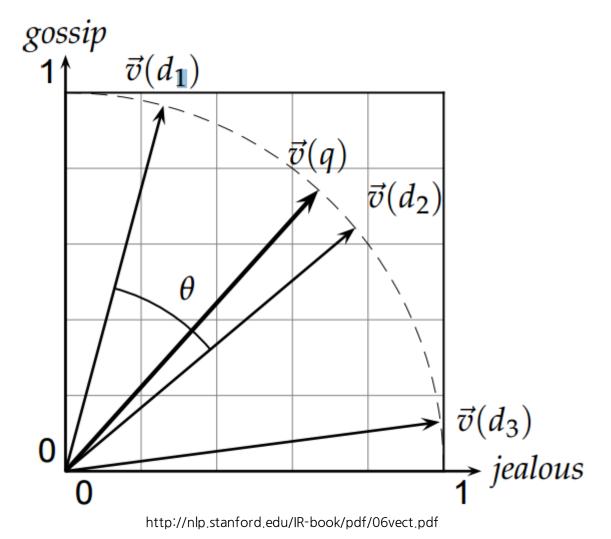
롯데월드 이용요금	롯데월드 입장료
에버랜드 이용요금	에버랜드 입장료
에코랜드 이용요금 할인	에코랜드 입장료 할인
대구 이랜드 이용요금	대구 이랜드 입장료
렌터카 이용요금	렌터카 이용료
파리 지하철 이용요금	파리 지하철 이용료
한강 유람선 이용요금	한강 유람선 이용료

검색엔진 핵심모듈: Matching and Ranking



Ranking: Old Approaches

• Vector Space Model (1975년)



Ranking: Old Approaches

• Probabilistic Ranking Model (1994년, a.k.a BM25)

$$P(\text{rel}|d,q) \propto_{q} \frac{P(\text{rel}|d,q)}{P(\overline{\text{rel}}|d,q)}$$

$$= \frac{P(d|\text{rel},q)}{P(d|\overline{\text{rel}},q)} \frac{P(\text{rel}|q)}{P(\overline{\text{rel}}|q)}$$

$$\propto_{q} \frac{P(d|\text{rel},q)}{P(d|\overline{\text{rel}},q)}$$

$$\approx \prod_{i \in V} \frac{P(TF_{i} = tf_{i}|\text{rel},q)}{P(TF_{i} = tf_{i}|\overline{\text{rel}},q)}$$

$$(2.1)$$

$$w_i^{\text{BM25}}(tf) = \frac{tf'}{k_1 + tf'} w_i^{\text{RSJ}}$$

$$= \frac{tf}{k_1 \left((1 - b) + b \frac{dl}{avdl} \right) + tf} w_i^{\text{RSJ}}$$

- 1. 한계효용의 법칙
- 2. 여러 단어 질의에 대한 and/or 제어

Ranking: Old Approaches

Language Model based IR (1998)

$$P(d|q) \propto P(d) \prod_{t \in q} ((1-\lambda)P(t|M_c) + \lambda P(t|M_d))$$

✓ Simple smoothing

$$\hat{P}(t|d) = \frac{\mathrm{tf}_{t,d} + \alpha \hat{P}(t|M_c)}{L_d + \alpha}$$

✓LDA (2006)

$$P(w \mid D) = \lambda \left(\frac{N_d}{N_d + \mu} P'(w \mid D) + \left(1 - \frac{N_d}{N_d + \mu}\right) P'(w \mid coll)\right)$$

$$+ (1 - \lambda) \left(\sum_{t=1}^{K} \frac{n_{-i,j}^{(w_i)} + \beta_{w_i}}{\sum_{v=1}^{V} (n_{-i,j}^{(v)} + \beta_{v})} \times \frac{n_{-i,j}^{(d_i)} + \alpha_{z_i}}{\sum_{t=1}^{T} (n_{-i,t}^{(d_i)} + \alpha_{t})}\right)$$

$$(9)$$

http://maroo.cs.umass.edu/pdf/IR-464.pdf

2000년대 초반 학교 밖 세상에는...

- 인터넷에 데이터가 폭발적으로 늘어나기 시작
- 야후, 구글, 네이버, 다음 등 검색서비스 업체들이 자리잡음
- 사람들이 검색서비스를 통해 인터넷에서 무언가를 뒤지기 시작
- 데이터 (문서, 클릭로그)가 쌓임

• 기계학습 전공자들은 데이터를 보면 흥분함

검색은 전형적인 기계학습문제 아닌가!

- 실제로 좋은 검색결과를 만들기 위해 많은 시그널(피쳐)을 사용
 - 질의에 있는 단어가 얼마나 많이, 또 얼마나 가깝게 나타났는가?
 - 많은 사람들이 보았거나 링크를 걸었는가?
 - 다른 사람이 어떤 단어로 링크를 걸었는가?
 - 문서를 작성한 사람이 과거에 스팸작성자로 경고조치 됐었는가?
 - 언제 만들어진 문서인가?
 - 몇 명이 조회한 문서인가?
 - 문서의 제목과 본문의 관련성은 높은가?
- (노이즈는 좀 있지만) 비교적 대규모의 학습집합을 구축하게 됨
 - 클릭여부 와 그 위치(랭크)
 - Last Click
 - Quick Close

Learning-to-Rank Overview

• Feature vector 생성의 예

= "한국 경제 전망"

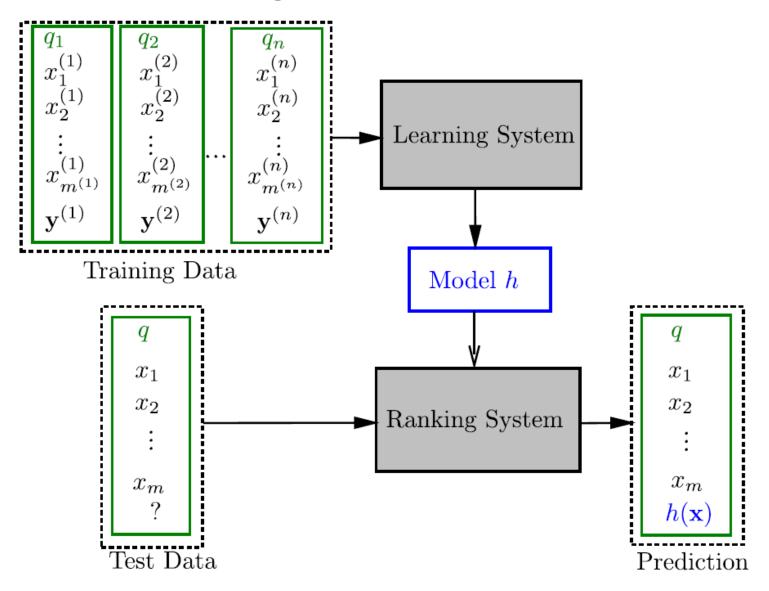
= [0.66, 2, 0.08, 1, 3, 1, 0, 4.2, 25, 0.43]

질의 단어 중 제목에 나타난 단어의 비율 제목에 출현한 질의 단어의 총 합 질의 단어별 "본문출현빈도/본문길이"의 합 질의 단어 중 본문에 나타난 단어의 비율

질의의 단어수 전문정보를 찾는 질의인가? 질의에 연예인 이름이 포함되어 있나?

문서가 포함된 사이트의 Site Authority 문서의 나이(Age) 문서의 품질(Quality)

Learning-to-Rank Overview



Ranking SVM

- Problem Definition
 - Input space: X
 - Ranking function $f: X \to R$
 - Ranking: $x_i \succ x_j \iff f(x_i; w) > f(x_j; w)$
 - Linear ranking function: $f(x; w) = \langle w, x \rangle$ $\langle w, x_i - x_j \rangle > 0 \iff f(x_i; w) > f(x_j; w)$
 - Transforming to pairwise classification:

$$(x_i - x_j, z), z = \begin{cases} +1 & x_i > x_j \\ -1 & x_j > x_i \end{cases}$$

Ranking SVM

Solution

$$\min_{w,\xi} \frac{1}{2} \| w \|^{2} + C \sum_{i=1}^{l} \xi_{i}$$

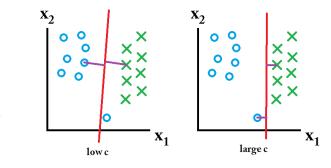
$$z_{i} \langle w, x_{i}^{(1)} - x_{i}^{(2)} \rangle \ge 1 - \xi_{i} \quad i = 1, \dots, l$$

$$\xi_{i} \ge 0$$

Slack variable 의 도입 → "틀린 정도" 도 모델링

$$\min_{w} \sum_{i=1}^{l} \left[1 - z_{i} \left\langle w, x_{i}^{(1)} - x_{i}^{(2)} \right\rangle \right] + \lambda \| w \|^{2}$$

$$[s]_+ = \max(0, s)$$
 $\lambda = \frac{1}{2C}$



C는 overfitting을 제어하는 hyperparameter

- Problems
 - Error 에도 그 중요도가 있는데 반영을 못한다 (검색의 특수성을 반영한 평가척도를 직접 최적화하지는 못함)

- Query별 labeled 문서수에 따라 bias가 생길 수 있다

Problems

- Error 에도 그 중요도가 있는데 반영을 못한다 (검색의 특수성을 반영한 평가척도를 직접 최적화하지는 못함)

- Query별 labeled 문서수에 따라 bias가 생길 수 있다

Problems

- Error 에도 그 중요도가 있는데 반영을 못한다 (검색의 특수성을 반영한 평가척도를 직접 최적화하지는 못함)

최적	3 2 2 2 1 1 1 1 1 1 1
모델1	3 2 2 1 2 1 1 1 1 1 1
모델2	2 3 2 2 1 1 1 1 1 1 1

- Query별 labeled 문서수에 따라 bias가 생길 수 있다

```
Q1:3221111

→2+4+8=14개의 학습용 pairwise data 생성
```

Q2:33222111111 → 6+10+15=31 개의 학습용 pairwise data 생성

- Problems
 - Error 에도 그 중요도가 있는데 반영을 못한다 (검색의 특수성을 반영한 평가척도를 직접 최적화하지는 못함)

최적	3 2 2 2 1 1 1 1 1 1 1
모델1	3 2 2 1 2 1 1 1 1 1 1
모델2	2 3 2 2 1 1 1 1 1 1 1

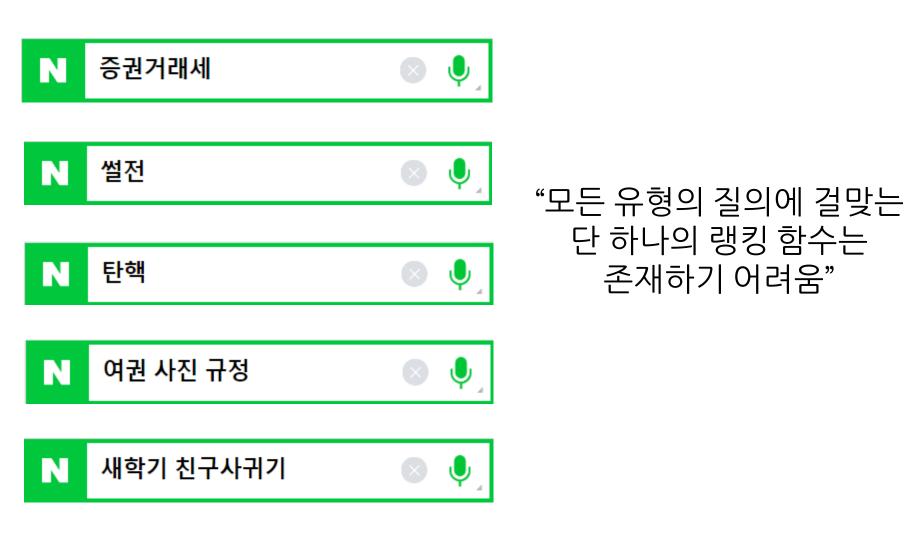
- Query별 labeled 문서수에 따라 bias가 생길 수 있다

```
Q1:3221111

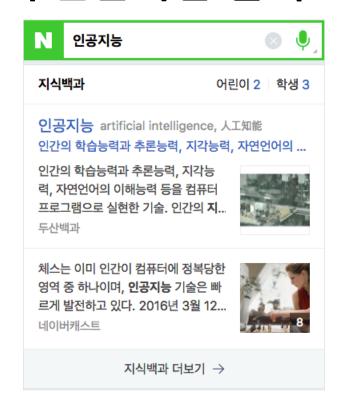
→2+4+8=14개의 학습용 pairwise data 생성
```

Q2:3322211111 → 6 + 10 + 15 = 31 개의 학습용 pairwise data 생성

더 근본적인 한계1: "One size NEVER fits all!"



더 근본적인 한계2: "랭킹"만 잘하면 되나?

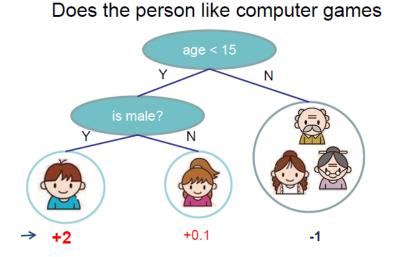


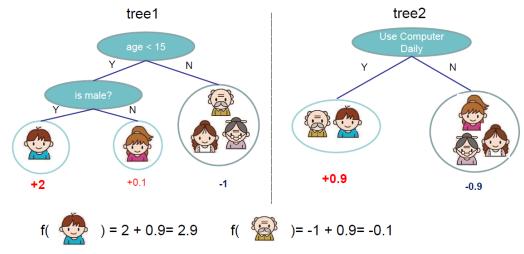
"랭킹뿐 아니라, 그 결과가 얼마나 적합한지도 알아야 함"

Ranking and Regression: GBRT

Regression Tree

Regression Tree Ensemble





Model: assuming we have K trees

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

Objective

$$Obj = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$$
 Training loss Complexity of the Trees

SVM, NN, LR같이 학습방법이 잘 연구되어온 Numerical vector/matrix기반 classifier가 아니라서… 학습방법 자체가 큰 연구토픽

Ranking and Regression: GBRT

GBRT (Gradient Boosted Regression Tree)

Model at training round t

Keep functions added in previous round

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i) \\ = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + f_t(x_i) + \Omega(f_t) + constant$$

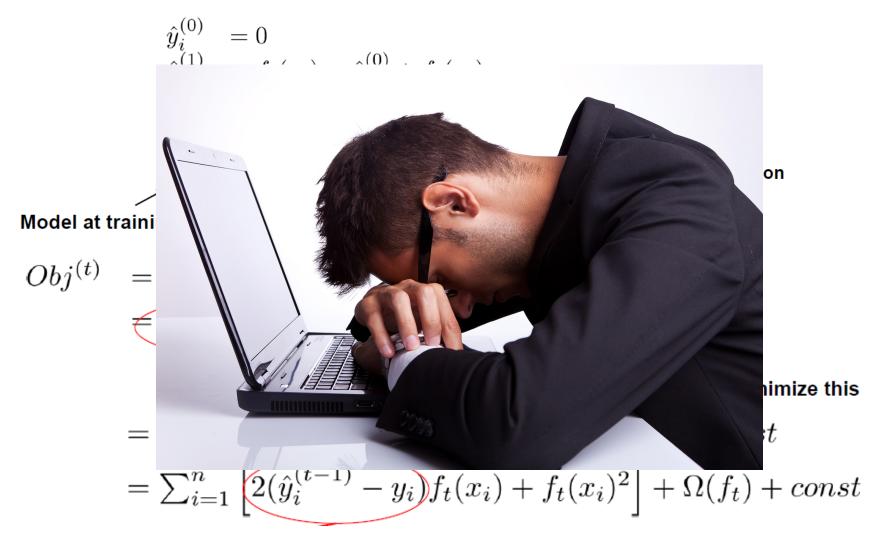
Goal: find f_t to minimize this

$$= \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

$$= \sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$$

Ranking and Regression: GBRT

GBRT (Gradient Boosted Regression Tree)



Thankful open sources!

Getting started: an Example Problem

You will find an example problem at

http://download.joachims.org/svm_light/examples/example3.tar.gz

It consists of 3 rankings (i.e. queries) with 4 examples each. It also contains a file with 4 test examples. Unpack the archive with

```
gunzip -c example3.tar.gz | tar.xvf -
```

This will create a subdirectory example3. To run the example, execute the commands:

```
svm_ran
    svm_ran
          >>> import numpy as np
          >>> from sklearn.metrics import mean squared error
The output
          >>> from sklearn.datasets import make friedman1
so, you will
          >>> from sklearn.ensemble import GradientBoostingRegressor
do not have
equivalent of
          >>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
          >>> X_train, X_test = X[:200], X[200:]
          >>> y_train, y_test = y[:200], y[200:]
Note the di
          >>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
It can also b
                   max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
equivalent d
          >>> mean_squared_error(y_test, est.predict(X_test))
are misorde
          5.00...
to the traini
```

svm_rank_classify example3/train.dat example3/model example3/predictions.train

Thankful open sources!

Getting started: an Example Problem

You will find an example problem at

http://download.joachims.org/svm_light/examples/example3.tar.gz

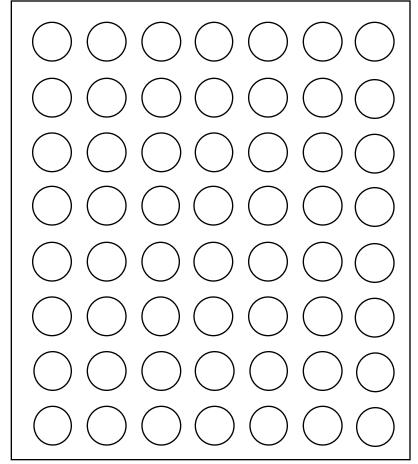
It consists of 3 rankings (i.e. queries) with 4 examples each. It also contains a file with 4 test examples. Unpack the archive with

sym_rank_classify example3/train.dat example3/model example3/predictions.train

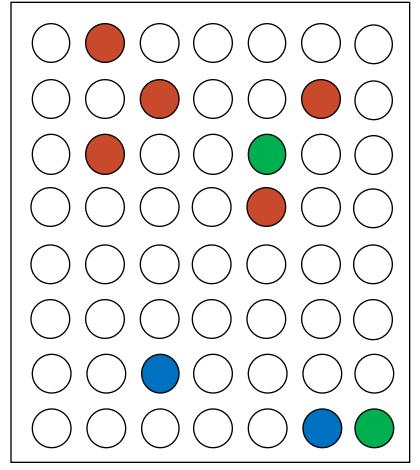
```
This will create a subdirectory examples to run the example e
                ☞ 관찰다 싶으면 우리 데이터로도 돌려보면서 감 잡고.
          이거다 싶으면 좀 더 개념을 파보고.
  필요하면 코드도 분석하고 수정해서 쓰거나 새로 만들기도 하고...
                                    >>> X train, X test = X[:200], X[200:]
Note the di >>> y_train, y_test = y[:200], y[200:]
                                         >>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
It can also b
                                                                          max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
equivalent d
                                         >>> mean_squared_error(y_test, est.predict(X_test))
are misorde
                                         5.00...
to the traini
```

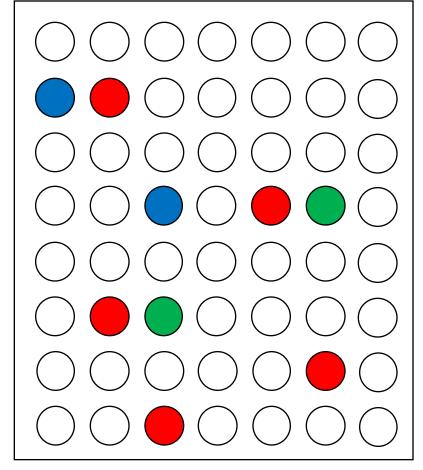
질의 :

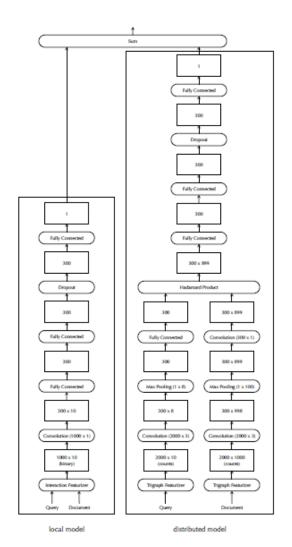
000000
000000
000000
000000



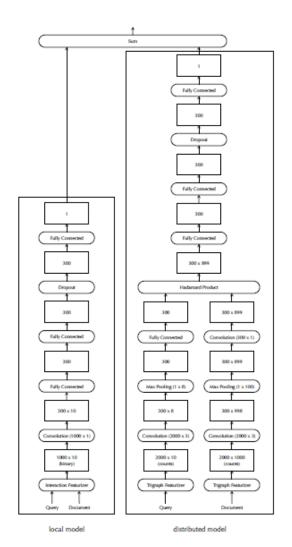
질의:







	NDCG@1	NDCG@10
Non-neural baselines		
LSA	31.9	62.7
BM25	34.9	63.3
DM	35.0	63.4
QL	34.9	63.4
Neural baselines		
DRMM	35.6	65.1
DSSM	34.3	64.4
CDSSM	34.3	64.0
DESM	35.0	64.7
Our models		
Local model	35.0	64.4
Distributed model	35.2	64.9
Duet model	37.8	66.4



	NDCG@1	NDCG@10
Non-neural baselines		
LSA	31.9	62.7
BM25	34.9	63.3
DM	35.0	63.4
QL	34.9	63.4
Neural baselines		
DRMM	35.6	65.1
DSSM	34.3	64.4
CDSSM	34.3	64.0
DESM	35.0	64.7
Our models		
Local model	35.0	64.4
Distributed model	35.2	64.9
Duet model	37.8	66.4

Take Home Message

- 전세계에서 검색서비스를 제공하는 회사는 얼마 안남았고, 네이 버는 살아남기 위해 불철주야 열심히 노력하고 있습니다.
- 검색에서 가장 중요하고도 비밀스러운 부분은 어떤 랭킹시그널 을 사용하는지 입니다.
- 사용자가 적당히 검색창에 입력해도 잘 검색될 수 있도록, 정확하게 단어가 일치하지 않아도 잘 매치시킬 수 있는 방법을 연구하고 있습니다.
- 끊임없이 개발되고 있는 랭킹알고리즘들을 섭렵하고 실험하며 서비스에 맞게 변형시키고 적용하는 일을 많은 엔지니어들이 하 고 있습니다.

Take Home Message

We are hiring!

http://recruit.navercorp.com

감사합니다