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Today’s Talk

s RWR for ranking in graphs: important problem
with many real world applications

o Web search, friend recommendation, product
recommendation, ...

m BePl: state-of-the-art method for exact RWR
o Linear algebra + Graph theory + Real World Graph Analysis

= TPA and OSP: those for approximate RWR
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== Outline

®» 1 Random Walk with Restart (RWR)
[ Fast Exact RWR
[0 Fast Approximate RWR
[0 Conclusions
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Proximity on Graphs
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= Good proximity measure?

m Shortest path is not good:

e - @ 0
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= No effect of degree-1 nodes (E, F, G)!
s Multi-faceted relationships
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e Good proximity measure?

= Network flow Is not good:

e - @
@ @

m Does not punish long paths
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"“@E?ﬂi*’gWhat is good notion of proximity?

e Multiple connections
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**What is good notion of proximity?

e Multiple connections
* Quality of connection
sLength, Degree,

Weight...

eAnswer: RWR |
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RWR: Example

Q: What is the most

related conference to
ICDM?

A: Random Walk With
Restart from S={ICDM}

Conference Author
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& RWR: Applications

m Web Search: Query Suggestion

URL

Query

www.aa.com

.} www.theaa.com/travelwatch/planner_main.jsp

mexiana

Suggested —
american airline

\.___/ en.wikipedia.org/wiki/Mexicana
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= TV Program Recommendation

Sky TV

Featured

Most Pop.. By Day

.
85
.‘h l

Matrioshki

Download in HD Sky Arts 1

Download in SD

v

RWR: Applications

Series

Silicon Valley

Sky Atlantic

Entertain. Arts & Mu.

e ﬁﬂ

Veep

Sky Atlantic
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= Random Walk with Restart (1)

= Glven a query node, compute proximities of other
nodes to the query node

= A random surfer moves to one of Its outgoing
neighbor with prob. 1-c, and jumps to the query
node with prob. c

o After many moves, RWR score of a node is
proportional to # of times the node is visited

= Also called Personalized PageRank

o Similar to PageRank, but the random surfer jumps only
to the query nodes
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= Random Walk with Restart (2)

= RWR assumes a random surfer on a graph

.

Random walk (with prob 1 — ¢) Restart (with prob c)
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**Random Walk with Restart (3)

= RWR computes the stationary probability that the
surfer stays at each node

seed node " -
2 0.31

3 0.14

4 0.25

0.09(5 5 0.09

Restarting probability ¢ = 0.2
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Conclusion: RWR

= Random Walk with Restart
o Personalized PageRank to compute node proximity

= Widely used for measuring proximities of nodes
In graphs

o Applications: Web search, friend recommendation,
product recommendation, ...

U Kang (SNU) 17



== Outline

] Random Walk with Restart (RWR)
®» [] Fast Exact RWR

[0 Fast Approximate RWR

[0 Conclusions

U Kang (SNU)
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Overview

m | will describe two state-of-the-art exact RWR
algorithms
o BEAR (SIGMOD 2015)
o BePl (SIGMOD 2017)

U Kang (SNU)
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BEAR: Block Elimination Approach
for Random Walk With Restart on

Large Graphs
(SIGMOD 2015)

http://datalab.snu.ac.kr/bear
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Introduction

= Random Walk with Restart (RWR)

o Goal: measures the relevance

o Properties: accounts for the g
and the multi-faceted relations

petween two nodes
obal network structure

nip between nodes

o Applications: ranking, community detection, link
prediction, and anomaly detection

= Question: How can we compute RWR on large
graphs fast, efficiently, and accurately?

U Kang (SNU)
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Problem Definition

m Glven: a graph G, a seed node s, and restarting
probability c
= Goal: find RWR score vector ¥ satisfying

r=(1-0)ATF + cq
Input:

« A € R™ row-normalized adjacency matrix
e g € R™: query vectorwhereq; =1and q; =0,Vi # s
e ¢ € R: restarting probability

Output:
7 € R™ RWR score vector with regard to node s

U Kang (SNU) 22



Previous Methods

s Background:

o RWR score vector 7 has to be computed with regard
to many different query vectors gs

o Computing 7 from scratch (e.g., the iterative method)
takes too long for large graphs

= Approach:

o Preprocessing the graph to speed up the RWR
computation

s Limitations:

o Previous preprocessing methods require too much
space and/or do not guarantee accuracy of r

U Kang (SNU) 23
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= Previous Method: Inversion (1)

s Background: computing RWR boils down to
solving a linear system

r=(1-0)AT¢ + cq
o (I-1-0)AT)F =cq
< Hr = cq

where H =1 — (1 —c)AT

U Kang (SNU)
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= Previous Method: Inversion (2)

= Preprocess phase (one-time cost): compute H~1
= Query phase (repetitive cost): compute 7

¥ =H(cq)
s Advantages:

o Fast query speed (one matrix-vector multiplication)

m Disadvantages:
o Inverting H takes too long
o H™1 is usually too dense to fit in memory

U Kang (SNU)
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gOther Preprocessing methods (1)

= Replace H~1 with sparser matrices by reordering

and decomposing H
m Still expensive in terms of space and/or inaccurate

(2) OR (Fujiwara et al. 12)

Input graph (1) Inversion
Exact, #nz=428M

#nz=0.1M Exact, #nz=527M

\ﬁ‘l—i i ;; =
ji zm g LR

H—l Q_l(z QT) R—l
Sparsity pattern of preprocessed matrices on the Routing

dataset
U Kang (SNU)
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Other Preprocessing methods (2)

(3) LU (Fujiwara et al. 12)4) B_LIN (Tong etal. 07) (5) NB_LIN
Exact, #nz=10M Approx, #nz=8M Approx, #nz=3M

\\

L™ U~ ATY U VA U VA

Sparsity pattern of preprocessed matrices on the Routing
dataset
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= Proposed Method: BEAR (1)

s We propose BEAR, a fast, space-efficient, and
accurate RWR computation method

(6) BEAR-Exact (Proposed)
Exact, #nz=0.4M

-1
| L2

-1
Uz

L7t U7' Hyp Hyp

Sparsity pattern of preprocessed matrices on the Routing
dataset

U Kang (SNU)
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' Proposed Method: BEAR (2)

s BEAR offers two versions
o BEAR-Exact: guarantees accuracy
o BEAR-Approx: fast and space-efficient but allows
small error
s BEAR consists of the two phases

o Preprocessing phase (one-time cost): partitions the
adjacency matrix into submatrices and precomputes
several matrices using the submatrices

o Query phase (repetitive cost): compute RWR scores
accurately from precomputed matrices

U Kang (SNU)
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BEAR: Main ldea

= The key Issue Is Inverting a matrix

ar=(I-(01- c)ﬁT)_lc?i = H 1cq

m Use “block elimination” 1dea

o If we can invert a submatrix of H easily, then we can
Invert H easily as well!

m But, the original adjacency matrix is not block

elimination-friendly
o Reorder the graph to easily invert a submatrix!

U Kang (SNU)
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1. Reordering

3. Schur
Complement __

[5] <0 [ -

Preprocessing Phase

2. Partitioning

- —_ —_ —_

—_ R T

—_
—_—

1T 11
11 11

e ot

spokes hubs

Ha21

Hi

4. Inverting

U Kang (SNU)
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Aside: Graph Reordering

U Kang (SNU)
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SlashBurn: Graph Compression and
Mining beyond Caveman Communities
(ICDM 2011, TKDE 2014)

U Kang Yongsub Lim Christos Faloutsos
(SNU) (SNU) (CMU)

U Kang (SNU) 33



Node Order Matters

= A graph and the adjacency matrix

12

@ ~N o g kW N -

— o e
N 2 o @

2 4 1 3
6 11 5
10 8 9 7
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 191 |1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1,111 1
1 1 1 1 1

U Kang (SNU)
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~ Node Order Matters

m Same graphs with different orderings

12 11

B0 BB

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1
2 1 1 1 1 1
311 1 1 1 1
4 1 1 1 1 1
511 1 1 1 1
6 1 1 1 191 |1
711 1 1 1 1
8 1 1 1 1 1
911 1 1 1 1
10 1 1 1 1 1
1My1 1 1,111 1
12 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12
1 111|111
211 1]11 |1
3011 1901 (1
411|131 11
51 /1Q1(1 1
61 |(111]|1]1 1
7 1 1901|1111
8 1 1 /10111
9 1 19011
10 191 11
" 111 |1 1
12 101 1}1

U Kang (SNU) 35
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m Same graphs with different orderings

1 2 3 4 5 6 7 8 9 10 11 12

6

11

1

9

1

1

1

1

1

1

1

1

1

1

1

1

14

2 4
12

10 8

Many [
sparse 4
blocks [T
wy L

\"" Y 12 1
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2 1 12 11
4 5
1 2 4 5 6 7 8 9 10 11 12
1 1 1901 (1
211 1901 (1
3011 1901 (1
411 |1 11
501 1 1 1
601|1 1911 1
7 1 1 11
8 1 1)1
9 1 111
10 1 11
" 1 1
12 1 1

=~2Good ordering = Good compression

Few
dense
blocks

(c)
©)
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e Problem Definition

m Glven a graph, how can we lay-out its edges so
that nonzero elements are well-clustered?

m Better clustering = better compression

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 111|111
Many 2 1 1 1 1 1 211 1]11 |1 FeW
311 1 1 1 1 3011 1901 (1
ar e 4 1 1 1 1 1 411|131 11 d
Sp S 511 1 1 1 1 51 /1Q1(1 1 ense
6 601|1

blocks ' T s blocks

1[4
8 1 1 1 1 1 8 1 1111
K 1 1 1 1 9 1 1|11
_ _
o0 10 1 1 1 1 1 10 1]1 11 900
1] 1 1 111 1 1 111 1 N/
7~ O\ 12 1 1 1 1 1 12 1111
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10000
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Main Result

re = 74896

Original
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m ‘Slash’ the top k hubs, and “burn’ the edges
= Move k hubs to the front of the row/column,

non-GCC to the back of the row/column
= Continue on the remaining GCC

Spokes

140 9
d i
13

(a) Before SLASHBURN (b) After SLASHBURN

U Kang (SNU) 39
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m ‘Slash’ the top k hubs, and “burn’ the edges

= Move k hubs to the front of the row/column,
non-GCC to the back of the row/column

= Continue on the remaining GCC

(k-hubset) (GCC) (spokesl) (spokesZ)

(k=-hubset)-+

(G0C)

(spokes1)

(spokes2) | 7

R e S ams o st Ees a
= il R E
=T
A
N -F B AR
A bk
3 X % r

(c) .. after 1 more iteration

(b) .. after 1 more iteration

(a) AS-Oregon after 1 iteration

U Kang (SNU) 40
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Flickr:
(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering
5 ||I'j |

AS-Oregon:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN
Sort Association Clustering

| BT
Enron:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

U Kang (SNU) 41
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1. Reordering

3. Schur
Complement __

[5] <0 [ -

Preprocessing Phase

2. Partitioning

- —_ —_ —_

—_ R T
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1T 11
11 11

e ot
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4. Inverting

U Kang (SNU)

1
1Hii

(=T-(1-¢)AT)

1
oH11
1
sH11

=

[s]

1Hi1
oH11
sH11

Ho1




1’}“"}‘\.\

2N
A

p

NS
v
Y

vl

K

Preprocessing Phase: Output

m Precomputed matrices are small or composed of
small diagonal blocks

= Require little storage

iy
oH11
; Hi2 |:>
sH11

s
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ml
LIl
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A Query Phase

= Given query vector g, compute RWR score vector
T using the precomputed matrices

= Theorem (Block Elimination): This equation
exactly computes RWR scores

T — /0 [
fofie [

]E <:I - H21_
[ fee] - S

U Kang (SNU) 45
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BEAR-ApPpProx

= Remove small entries in precomputed matrices
m Fast and space-efficient but allows small error

oHi) Hio |:>

s
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ml
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e Experimental Settings

= Machine: single PC with with a 4-core CPU and

16GB memory

s Datasets: large-scale real-world network data

dataset #nodes #edges
Routing 22,963 48,436
Co-author 31,163 120,029
Trust 131, 828 841,372
Email 265, 214 420,045
Web-Stan 281,903 2,312,497
Web-Notre 325,729 1,497,134
Web-BS 685, 230 7,600, 595
Talk 2,394, 385 5,021,410
Citation 3,774,768 | 16,518,948

U Kang (SNU)
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Competitors

s Exact methods
a Inversion
o lterative method
o LU decomp. (Fujiwara et al., 2012)
0 QR decomp. (Fujiwara et al., 2012)

= Approximate methods
o BLIN, NB_LIN (Tong et al., 2008)
o RPPR, BRPPR (Gleich et al., 2006)

U Kang (SNU)



Q1. Space Efficiency

m Q1. How much memory space does BEAR-EXxact
require for their precomputed matrices?

5105 BEAR-Exact mmssmi | LU decomp. mes
= 10t | QH decomp. Inversion s
%103 Up to 22x less
5102 memaory space
S 1 than competitors
S 10"
= 10°

50, N IS

% Sy,
é”@ %‘% ? 4 z;% 4/0,}. %,

Space for preprocessed

data
U Kang (SNU) 49
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Q2. Preprocessing Time

= How long does the preprocessing phase of

BEAR-EXxact take?

©10* [ BEAR-Exact LU decomp.
% QR decomp. Inversion mmmm—
=, A3
08)10
:.:102
~
S 10
O 0
c—510
=0
/90 17’@ [/p@ 17’@ U O/z' .
s ° S 6,556, .5
9 %, %, o,« S Z

Preprocessing time of exact

methods
U Kang (SNU)

Up to 12x less

preprocessing

time than other
methods
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Q3. Query Time

= How long does the query phase of BEAR-EXxact

take?
S 10° rBEAR Erac [ LU decomp.
% 10 | Iterative QR decomp. ]
— " | Inversion s | Up to 8x less query
EV | timethan LU
8102 | decomp.
gy | Up to 300x less
) [ ] )
= 0 | | query time than
’90 h’@ P, Ve, "oy i '
%@%@, 9 g 62%2%4 %, lterative method

Query time of exact methods

U Kang (SNU) 51



Q4. Speed vs Accuracy

s Does BEAR-Approx provide a better trade-off
between speed and accuracy than other methods?

1 S A e %! K 4 Drop tolerance
Best N @ (Expand threshold)
> 08 - 0(10%) /
N v n2 (102) O
S E 06
STE © % ' (10%) [
S5 ® 1/2 N
O o n'<(0.1) <&
2 s ° n'*(0.5) /
= 5) A
8 o2
) Methods
Ay BEAR-Approx s
oL . ' ' T NBLLIN s
10 10° 102 10" RPPR
BRPPR mam

Wall clock time (sec)

Query speed v.s. Accuracy on the Routing

dataset
U Kang (SNU)
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Q5. Space vs Accuracy

s Does BEAR-Approx provide a better trade-off
between space and accuracy than other methods?

1| a® B & " {Drop tolerance
Best o 0\
= 0.8} 1 n? ()
8{% @ n' [
©E 06 TR
© ,
S 0 @ w4 A
O o —
2 % 0.4 ¢ Methods
8 BEAR-Approx |
= 02 NBLIN |
A p =
0f, . .
10° 10° 10°

Memory usage (MB)
Space for preprocessed data v.s. Accuracy on the Routing dataset

U Kang (SNU) 53
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s BEAR (Block Elimination Approach for RWR)

o partitions the adjacency matrix into small submatrices
using the hub-and-spoke structure of real-world
graphs

o computes RWR scores accurately from the
submatrices using block elimination

s BEAR-EXxact

0 up to 22x less space, 12X less preprocessing time,
and 8x less query time than other exact methods

s BEAR-Approx

o better trade-off between time, space, and accuracy
than other approximate methods

http://datalab.snu.ac.kr/bear

U Kang (SNU) 54



BePl: Fast and Memory-Efficient
Method for Billion-Scale Random

Walk with Restart
(SIGMOD 2017)

http://datalab.snu.ac.kr/bepi

U Kang (SNU)
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Proposed Method

m BePl| (Best of Preprocessing and Iterative approaches)

o A fast and scalable method by taking the advantages of both
preprocessing and iterative methods
m Key ldeas

o ldea 1) Exploit graph characteristics to adopt a
preprocessing approach for fast query speed

o ldea 2) Incorporate an iterative method into the
preprocessing approach to increase the scalability

o ldea 3) Optimize the performance of the iterative
method to accelerate RWR computation speed
= (Omitted for brevity; see the paper)

U Kang (SNU) 56



Proposed Method — Idea 1

s Combine deadend and hub & spoke reordering

Deadend Hub & Spoke
on H,,
1
H,, is a block diagonal matrix!
Hll\ le O -rl- -ql-
Hr = CQs < H21 H22 0 Ll=cl|q:2
_H31 H32 I_ _r3_ -q3_

U Kang (SNU) 57



Proposed Method - Idea 2

= Incorporate an iterative method into the
preprocessing approach
o Computing H{{ is trivial since it is block diagonal
o But, inverting S is impractical in very large graphs

s dim(S) = # of hubs > 1 million (10°) in large graphs
= e.g., 10 million hubs in the Twitter network

1] | Hif(cq; — Hipry)
L2 =1S"'(cq; — cH,1H{ q4)
I3l | cqz —Hz iy — H3ory

S =Hy, — H21H1_11H12

U Kang (SNU)
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> Proposed Method — Idea 2
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= Incorporate an iterative method into the
preprocessing approach

o Solution. Solve the linear system on S using an
iterative linear solver such as GMRES [Saad et al., '86]

r, = S"'(cq; — cH;Hi{ q1)
& Sr, = cqp — cHy Hif'qy 2 G,
m Linear solvers obtain the accurate r, without inverting S

Sr, = q

Introducing the linear solver increases the scalability of RWR computation!

U Kang (SNU) 59
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= Experimental Questions

m Q1. (Space) How much memory space does BePl
requires for their preprocessed results?

m Q2. (Prep. Time) How long does the
preprocessing phase of BePl take?

m Q3. (Query Time) How quickly does BePI
respond to an RWR query?

m Q4. (Scalability) How well does BePI scale up?

U Kang (SNU)
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Q1. Space Efficiency

How much memory space does BePI requires for
their preprocessed results?

106 L [BePI
| | Bear
105 L LU
10 F 130x BePlis up to 130 x less
103+ memory space than
(02 other preprocessing
o methods!

: o e, Y, Y Te
% o %, Sy T, G,
(O AT S / o7
Ox O}c? O,)) Q/’?,{, 6‘/&"

Memory space for preprocessed data
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Q2. Preprocessing Time

= How long does the preprocessing phase of BePl

BePl is significantly
faster than other
methods in terms of

preprocessing time!

take?
6
107 BePl
—~ . 5 Bear
310 LU
9 _ 7935x
o 10% B679xl 1
£ ]
:103 F
3
5107
S, 1
<10
100 50 b, & £, < P
/- y . /) . T
s A Yy r e, Ty i e,
/5% y @O}@ (9 Vs OC/f (/,2{' (SN (0

Preprocessing time

U Kang (SNU)

62



= Q3. Query Time

= How quickly does BePI respond to an RWR

query?
- 10% HamPEs e 3
g 10° P%v?v_% — 4x $
[4h) ot 3X |
e 10° ¢ 5 1 .
s o 9 i | BePlis up to 9x faster
(&} i X g . .
S 0| than other competitors in
2 107 ¢ 3X :
S 1o ;“’ | terms of query speed!
0% @ b, & <. < A |
Bo, Ty sy, oy %, ",
Vg, 'O@o;é% " G“""o,,)c:;% . %,

(c) Query time
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Preprocessing Time (sec)

Q4. Scalability of BePlI

s How well does BePI scale up?

10°

104 |
107 ¢
102 L
10 L

107"

o Processes 100 x larger graphs than other preprocessing
methods

o Shows the fastest RWR computation speed among others

10* : : 10°

: ‘ y ; ‘ ‘
? ] 8 ® 100x _10%} :
: =107 ¢ ] 2
. 4 H w0, E E
P 100x « > o A
E\ 7 % 102 L E i E 100 i 5\0‘)6:'\- i
: > &
= O j ot |
. E 101 L =) i =}
4 BePl o 09 BePI a |, LU
ot Bear = 4o Bear 107 ¢ GMRES
op® LU 100 ‘ LU 10 ‘ Power —&—
10° 107 10° 10° 107 108 10° 107 10°
Number of edges Number of edges Number of edges
(a) Preprocessing time (b) Space for preprocessed data (¢) Query time

BePl shows the best performance in terms of scalability and running time!
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Conclusion: BePI

m BePl (Best of Preprocessing and Iterative approaches)
o ldea 1) Exploit graph characteristics for a prep. method
o ldea 2) Incorporate an iterative method into the prep. method
o ldea 3) Optimize the performance of the iterative method

= Main Results
o Fast and scalable computation for RWR on billion-scale
graphs
o Requires 130x less memory space & processes 100 x larger
graphs than other preprocessing methods

o Computes RWR scores 9 x faster than other existing
methods

http://datalab.snu.ac.kr/bepi
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[ Fast Exact RWR

Outline

.1 Random Walk with Restart (RWR)

B [] Fast Approximate RWR

[ Conclusions
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Overview

= | will describe two state-of-the-art approximate
RWR algorithms
o Static method TPA (to appear at ICDE 2018)
o Dynamic method OSP (to appear at WWW 2018)

U Kang (SNU)
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PARIS 2018

TPA: Fast, Scalable, and Accurate
Method for Approximate Random Walk

with Restart on Billion Scale Graphs
(ICDE 2018)

http://datalab.snu.ac.kr/tpa
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—~ Problem Definition

= How can we approximately compute RWR
quickly, with little loss of accuracy?

U Kang (SNU) 69



\\L‘["é".\b

A
“l!‘

<)
v
¥
/‘3))(4&

CPI: Cumulative Power Iteration
s Exact RWR computation method

= Re-Interpretation of RWR

m Propagation of scores across a graph
1) Score ¢ Is generated from the seed node
2) At each step, scores are divided evenly into out-edges
with decaying coefficient (1 — ¢)
3y Each node accumulates scores they have received
s Accumulated scores become RWR score of each node
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= x(i) € R™!: interim score vector computed from i th iteration
m Correctness of CPI: Theorem 1

m For PageRank computation, the seed vector q Is set to % 1
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TPA: Two Phase Approximation

m TPA approximates RWR scores with fast speed and
high accuracy

o CPI performs iterations until convergence

o Divide the whole iterations in CPI into three parts as
follows :

I'cpI
— I'family -+ I'neighbor - I'stranger
— x0) ¢ x5 L (8) L x(T=1) 4 (T)

~ —~ N e’
family part neighbor part stranger part

§ @ starting iteration of 7,¢;gnpor, T . Starting iteration of rgq-qp ger
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TPA: Two Phase Approximation

I'cpi
— I'family + I'neighbor + I'stranger
—x0) 4 xS0 () oo (1) 4 (T)

~ ~~ ~~ N—
family part neighbor part stranger part

I'TPA = TIfamily =+ I'neighbor =+ Istranger

m 1st Phase: Stranger Approximation
0 Approximates strqnger IN RWR using PageRank
= 2nd Phase: Neighbor Approximation

0 Approximates 1e;gnpor USING Tramily
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yStranger Approximation - Definition

A

m PageRank score vector p.p; is represented by
CPI as follows:

+/(0) — %1 /(1) — (1 _ C)ATXI(z‘—l)

Pcpr1

= Pfamily T Pneighbor + Pstranger

— 3(’(0) T XI(S_11+§,(S) I X’(T—11+§’(T) + -

—~ —~ —~
family part neighbor part stranger part

B Tstranger IN RWRis approximated by psiranger
in PageRank as follows:

Istranger — Pstranger
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Stranger Approximation - Intuition

= The amount of scores propagated into each node
1. # of in-edges

o Nodes with many in-edges have many sources to
recelve scores

2. Distance from seed node

0 Scores are decayed by factor (1—c) as 1teration
progresses

o Nodes close to the seed node take in high scores
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== Stranger Approximation - Intuition

= In stranger iterations

o Scores (x(T),x(T + 1), ---) are mainly determined by
# In-edges
o Nodes are already far from seed

m PageRank Is solely determined by arrangement of
edges (= # Iin-edges) !!
o Motivation of Stranger Approximation

o Estimate stranger iterations in RWR with those In
PageRank

m Precompute 7g-qnger IN Preprocessing phase
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TPA: Two Phase Approximation

I'cpi
— I'family + I'neighbor + I'stranger
—x0) 4 xS0 () oo (1) 4 (T)

~ ~ —~ N o’
family part neighbor part stranger part

I'TPA = TIfamily =+ I'neighbor =+ Istranger

m 1st Phase: Stranger Approximation
0 Approximates strqnger IN RWR using PageRank

m 2nd Phase: Neighbor Approximation
0 Approximates 1e;gnpor USING Tramily
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= Neighbor Approximation - Definition

= The neighbor approximation
o Limit computation to 741y
0 Estimate 7,eignpor DY SCAlING 7 41mi1,, s follows:

. o HrneighborHl r o (1 _ C)S T (1 o C)Tr
neighbor — family — family
1—(1-1¢)°

“ I'family || 1
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Block-wise,
Community-like
structure

of real-world graphs!

o T S Y
12000

[1] U. Kang and C. Faloutsos. Beyond ‘caveman communities’: Hubs and spokes for
graph compression and mining. In ICDM, 2011
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“~Neighbor Approximation - Intuition

node] | _ o [ ;
~ | Communi
b olf seed node .

m Nodes which receive scores in the early iterations
(family part)
o Would receive scores again in the following iterations
(neighbor part)
= Nodes which have more in-edges thus receive
more scores In the early iterations

2 Would receive more scores than other nodes In the

following iterations.
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TPA: Two Phase Approximation

Exact RWR: I'cpp —I'family + I'neighbor + Istranger

Preprocessing phase

PcP1 =Pfamily + Pneighbor + Pstranger

T siranger 4= Pstranger : Stranger approximation

. 4

Online phase

Compute I'typijy using CPI

‘ | I'nei ghbor | ‘ 1

I neighbor €= I'ramily : Neighbor approximation

A

Approximate RWR: I'TpA =TI'family T Ineighbor T Istranger

HI‘family H 1

U Kang (SNU)



Experimental Questions

m Q1. Performance

o How much does TPA enhance the computational efficiency
compared with its competitors?

m Q2. Accuracy
o How much does TPA sacrifice accuracy?

U Kang (SNU) 82



& Ql Performance of TPA- Speed

How long does TPA take for its preprocessing phase and online
phase, respectively?

o MENN BEAR_APPROX[ZZTTTT] BRPPR FORAT ] HubPPRI"""| NB_LIN
4 H "
—_ 10 Kl F —_—
o 1.3% 1)5 § 103_
= P ;; | 27x = 102} 20x | 30x
g 5 5 B 1.7% E a1l 12x
= 10°F H o H15x N = 10 17x I
x 5 N | x 400 5x
S 1B N Q ;
E L \ S0 R &
= 10° fasxfi RHiH N T 102 hsx | I[ M |
1 LeiH il N = 10-31':‘-9': T e .
10 : : G : '
S QG o4, %, % iy Y w, 7
% %, % o, %, % S, q?g/ S 8y
606, Y6 %0% ’(z,% %6 y O O’o Ty S %,@f
Sy 4
(a) Preprocessing Time (b) Online Time

TPA takes smaller running time in both preprocessing and online phases
(up to 30x)
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= 'Q1: Performance of TPA- Memory

How much memory space does TPA requires for preprocessed
results?

o s o M BEAR_APPROX[207707] BRPPR FORAL | HubPPRI """ "| NB_LIN

40x -
4 | 16x
g 107 ¢ 35x
- 3 24x. Z
o 10| 27 T [ |
= 15x | 14 N :
g 10° | 7 l 7
= [ ‘ ! }
g 10 el di i B /
& W0 7 P oY |
= 100 U B B |
107" % O; ,oo% % p,‘,* % A;,
Ly 0y ()
% o Y%, X Y
%Of s " %, % %@f

TPA requires up to 40x smaller memory space than competitors

U Kang (SNU)
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Q2: Accuracy of TPA

How much does TPA sacrify its accuracy?

nggged)—x— BEAR_APPROX—f=}— BRPPR FORA %7 HubPPR =2 NB_LIN
1 ::___‘:;—':;';-Nl___‘;-__{i - v i . - 1 ;_'___.@:Z:,t:.n______ 1 fw&———""' e
0.99 1 3 - —y ' i o
0.9 1 0.99 zm
X 0.99 |
= 08 = 0.96 = =
8 8 8 0.98 g 0.98 |
2 o7 & o3 e c
_ 0.97 | : :
0.6 0.9 7 0.97
0.5} : : ] . . : 0.96 : 0.96 ; . g
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
K Kk K k
(a) Slashdot (b) Pokec (c) WikiLink (d) Twitter

TPA provides the best accuracy among competitors!
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Conclusion: TPA

m TPA (Two Phase Approximation)

o Neighbor Approximation
m block-wise structure of real-world graphs

o Stranger Approximation
s PageRank

s Main Results

o Requires 40x memory space & preprocesses 3.5x time than
other preprocessing methods

o Computes RWR scores 30x faster than other existing methods
In online phase

o Maintaining high accuracy

http://datalab.snu.ac.kr/tpa
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Fast and Accurate Random Walk with
Restart on Dynamic Graphs with
Guarantees
(WWW 2018)

http://datalab.snu.ac.kr/osp
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= Problem Definition

= How can we approximately compute RWR
quickly, for dynamic graphs?
o Dynamic graphs: nodes/edges are added/removed
continuously

o We want to update RWR scores quickly, without
computing it from scratch for graph update

U Kang (SNU)
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*<Score Propagation on dynamic graph

k-

More scores would be
DELETE (AG)

propagated from A

1 1
=, O

s RWR scores of nodes are determined by arrangement

of edges
1. When the graph G is updated with AG

2. Propagation of scores around AG IS changed

U Kang (SNU) 89



DLEIND
T RS
R

SScore Propagation on dynamic graph

O—% 0

/ DELETE (AG)

,0

3. These small changes are propagated

4. Affect previous propagation pattern across whole
graph

5. Finally lead to rye,, different from rgq4
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OSP: Offset Score Propagation

(Joffset < (1- C)(ET — AT)rold =(1- C)(AA)Trold

xD e (1= ¢)BT) goftset

Ioffset € Z X Sffset Z((l C)BT)lqoffset
1=0

Inew < Told T Toffset

1. Calculate an offset seed vector q,ffses

2. Propagate the offset scores across G+AG to get an off

set score Vector Iy fser

3. Finally, OSP adds up ry;q and ry¢ser 10 get 75,0,
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OSP-T: OSP with Trade-off

Algorithm 1: OSP and OSP-T Algorithm

Require: previous RWR score vector: rojq, row-normalized adjacency
matrix: A, update in A: AA, restart probability: c, error tolerance: €
Ensure: updated RWR score vector: rpew
1: set seed offset vector qoffset = (1 — c)(AA) "ryq
(0)

: set Ioffset = 0 and X 1, = Qoffset

compute X

offset

. end for

2

3

4

5:  compute Iyffsget < Toffset + X
6

7: Thew € Told + Toffset

8

: return rpeyw

m Approximate method for dynamic RWR
= Use the same algorithm with OSP

m Regulates accuracy and speed using higher
error tolerance parameter ¢

U Kang (SNU)
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Experimental Questions

m Q1. (Performance of OSP)

o How much does OSP improve performance for dynamic RWR
computation from baseline static method CPI?

m Q2. (Performance of OSP-T)

o How much does OSP-T enhance computation efficiency,
accuracy compared with its competitors?

U Kang (SNU) 93
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= Q1. Performance of OSP

m How much does OSP improve performance for
dynamic RWR computation from baseline static
method CPI?

= Running time for tracking RWR exactly on a
dynamic graph G varying the size of AG
o Initial graph G with all its edges

o Modify G by deleting edges.
= 1 edges to 10° edges

=)
]
ME

U Kang (SNU)
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Running Time

Q1. Performance of OSP

CPl —%— OSP —*— QOSP-T—=—

e
7<

Running Time
Running Time

10-3 5 |1 |2 |3 |4 s 10-3 ] ] 1 !
10 10 10 10 10 10 10° 10" 102 10° 10* 10°
Size of modification Size of modification
(a) DBLP (b) Berkstan
T T T T T N e N Ny
e %3 e e

Running Time

-2 . Ll . bl N -
10
10° 10 10? 10° 10* 10° 10° 10" 102 10° 10* 10°
Size of modification Size of modification
(c) LiveJournal (d) Orkut
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== Q2. Performance of OSP-T

= How much does OSP-T enhance computation
efficiency, accuracy compared with its competitors?

m Experimental setting

o Generate a uniformly random edge stream and divide the
stream into two parts

o Extract 10 snapshots from the second part

o Initialize a graph with the first part of the stream

o Update the graph for each new snapshot arrival

o At the end of the updates, compare each algorithm.
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L1 norm of error

(SOSPES;E) LazyForward TrackingPPR
AsSlashdot {>Berkstan O Orkut XX WikiLink
ol | W ‘ ‘ BEST g ‘ ' ‘ ' 1
107" I ,
éo.s A A 2
10 = o ¢
1 50.2‘ X
oA ¢ e
BEST
107" 10° 101 102 102 104 < 107" 10° 10' 102 103 10%

Q2. Performance of OSP-T

m Trade-off between accuracy and running time

Wall clock time (sec)

(a) Accuracy on L1 norm of error

U Kang (SNU)

Wall clock time (sec)

(b) Accuracy on Rank
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Conclusion: OSP

m OSP (Offset Score Propagation)
1. Calculate offset scores around the modified edges
2. Propagate the offset scores across the updated graph

5. Merge them with previous RWR scores to get updated RWR
scores

s Main Results
o Exactness of OSP
o Error bound and time complexity of OSP-T

o Faster and more accurate RWR computation than other methods
on Dynamic graphs
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http://datalab.snu.ac.kr/osp
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[ Fast Exact RWR

® [0 Conclusions

Outline

.1 Random Walk with Restart (RWR)

~ast Approximate RWR
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s Conclusions

s RWR for ranking in graphs: important problem
with many real world applications

o Web search, friend recommendation, product (e.g. TV
program) recommendation, ...

m BePl: state-of-the-art method for exact RWR
o Linear algebra + Graph theory + Real World Graph Analysis

m [ PA and OSP: state-of-the-art methods for
approximate RWR
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Thank you !
http://datalab.snu.ac.kr
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